Devoir de synthèse n°3

Exercice 1: (13 pts)

Le plan est muni d'un repère orthonormé (O, i, j).

Soient les fonctions f et g définies par $f(x) = \sqrt{x+2}$ et $g(x) = \frac{3x+6}{2x+2}$ et on désigne par \mathscr{C}_f et \mathscr{C}_g

leurs représentations graphiques respectives dans le repère (O, i, j).

- Déterminer les ensembles de définitions de f et de g.
 - 2) Tracer \mathcal{C}_g .
 - 3) Résoudre graphiquement, dans IR, l'inéquation $g(x) \ge 0$.
 - 4) Calculer les coordonnées des points d'intersection de \mathscr{C}_{f} et \mathscr{C}_{g}
 - 5) Tracer 8.
 - 6) Résoudre graphiquement, dans IR, l'inéquation $\frac{3x+6}{2x+2} < \sqrt{x+2}$.
- 1) Déterminer les coordonnées du point A intersection de \mathscr{C}_f avec l'axe des ordonnées.
 - 2) Soient B le point de \mathscr{C}_f d'abscisse 7 et C(1; -3). Montrer que le triangle ABC est rectangle.
 - 3) Déterminer une équation cartésienne du cercle & circonscrit au triangle ABC.
- III/ 1) Vérifier que $E\left(-\frac{3}{2}; -\frac{3}{2}\right)$ et F(-4;1) sont deux points de \mathscr{C}_g .
 - 2) Déterminer l'équation réduite de (EF).
 - 3) Résoudre graphiquement, dans IR, l'inéquation $\frac{-3x-6}{x+1} \le 2x+6$.
- IV/ Soit la fonction h définie par $h(x) = \frac{3|x| + 6}{2|x| + 2}$.
 - 1) Déterminer l'ensemble de définition de h et montrer qu'elle est paire.
 - 2) Tracer Ch dans le même repère, expliquer.
 - 3) Déterminer graphiquement les variations de h puis montrer que pour tout réel x ; $h(x) \le 3$.

Exercice 2: (7 pts)

Soit ABCD un carré de centre O, de coté a(a∈IR+*) et ABE un triangle isocèle en E situés dans deux plans perpendiculaires. Soit I le milieu de [AB].

- 1) a) Déterminer le plan médiateur de AB].
 - b) Montrer que (ABC) \(\text{OIE} \) .
 - c) Montrer que (EI) \(\lambda \text{BC} \).
- 2) Soit Δ la parallèle à (EI) passant par O.
 - a) Montrer que Δ est l'axe du cercle circonscrit au carré ABCD
 - b) Soit F un point de Δ tel que OF = $\frac{a\sqrt{2}}{2}$

Montrer que le triangle CDF est équilatéral.

c) Soit G le centre de gravité du triangle CDF.

Montrer que $(OG) \perp (CDF)$.

